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{s Advances in Self-Consistent
| Electromagnetic Modeling

« Complex cavity computations with particles have
been improved through algorithms, including
parallelization, making possiblle computations of
wakefields in complex structures, intrabunch effects,
injectors, ...

e Summary of some of what has made this possible
— Local charge and current deposition methods
— Parallelization
— Improved stability
— Boundary representations

e Comparison with
— Finite element approaches
— Unitary separation approaches




3 The goals of modeling?
 Part of the design process

— Create
— Simulate
— Build
— Test
e Simulation for prediction of
— Cavity losses
— Instability
* In general for
— Exploration
— Confirmation

— Elucidation



. Modeling allows one to answer questions
without construction cost

NLC

ILC (Tesla)




~ Basic problem

e Maxwell

@ =-VxE
ot
oE »
——=c"[VxB-uj]
ot

e« Particle sources
J= E q;Vio(X —X;)

« Particle dynamics

dt mi

d(}/V) _ qi [E(Xi,f)+Vi

in charge particles moving
in EM fields

Auxiliary equations

x B(x;,1)] oy,



V4 With much other physics added for a
-~ complete model

 Particle injection

« Dark currents

« Multipactoring

« Photon (short wavelength) production
« Surface resistance

e Secondary emission



ELECTROMAGNETICS




ﬁﬁ‘é/ Yee: 2nd order accurate spatial
1 3 i - -
differentiation

&=_8Ez+aEy Ez /
ot dy 0z

s Atthe midpoint
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* Leads to special layout )
of values 1n a cell L o
* Yee mesh gives 2nd 1,
order accuracy of spatial . 1
derivatives y z /




Second-order in time by leap frog

ot Jdy 0z

n n n n
prtl/2 _ pn1/2 _ o Eoiik—Ezijnie Eyijke1—Eyiik
x,i,j.k = Px,ij k= Al A +
y Az
 Time centered differences give second order accuracy in At
« (Can get time-collocated values by half-stepping in B

 Similar for E update, except c? factor



% Matrix representation useful for stability

dB E_. E E i)

xX,i,].k _ i,k Tz, j+Lk + vii, . k+1 Ty j.k
dt Ay Az
db de 1o 2
Lo—Cee T_2Cp YD _2cicep--Deb

Magnetic and electric spaces are different

C, C’ are adjoints, so D 1s self-adjoint (symmetric)
e Diagonalize into separate harmonic oscillators

Leap frog for harmonic oscillator, stability limit at
1

Atery =
W Atepy =2 CFL ) \/1 11

+ +
Ax? Ay2 Az
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«+ Gershgorin Circle Theorem gives stability
| bound

* Frequencies are eigenmodes of D =¢? C’C
« Eigenvalues 1n range

0 <w” <max E‘Dzj over i
J

« Gives precise range for infinite grid

e Points to relation between coefticients and
frequencies for other cases
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Many other methods available

e Finite element - later

« Hamiltonian splitting (de Raedt): into exactly solvable

parts d(:l)t,e) =A+(b,e)=M*N¢(b,e)
— known: dUM=M'UM dUN=N°UN

dt dt
— stable approximate solution (since unitary):

UAr)=Upn(A1/2)2 Uy (At)e Up(A2/2)
— Similar to drift-kick of symplectic integration

« None of these has yet proven as effective for self-
consistent particle simulation as FDTD, explicit or
implicit
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PARTICLES
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% Computing particle-particle interactions is
prohibitive

« Coulomb interaction leads to sz force
computations

dyl =%E]

Som

;- J\
+ Lenard-Weichert (retarded potentials) - worse due
to need to keep history

dyvi _ g
pra Eq] F)(x;X ;(t - 7))
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¢+ Particle In Cell (PIC) reduces to N scaling

Particle contributions to
charges and currents are

added to each cell: O(N,,)
operations

Forces on a particle are = . -

found from interpolation of o Peogle 9 .: s |
the cell values: O(N ) :: *ole loe
operations oj® (o Lo
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¢ Finding the force: interpolation (gather)

Linear weighting for each

dimension

— 1D: linear

— 2D: bilinear = area weighting

— 3D: trilinear = volume weighting

* Force obtained through 1st order,
error 1s 2nd order

For simplicity, no loss of
accuracy, weight first to nodal
points

xpee x,node x.yee
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d/ A special scatter ensures finite difference

charge conservation
= Principle: apportion via some weighting ‘

»  Computing the charge density

— Compute the current density and find the
charge density from finite difference

L — Directly weight particles to the grid

If these two methods do not agree, then one | \
can have false charge buildup from the

_ : : Current contrib. to this
Ampere-Maxwell equation. Requires interface must match charge

.|| Poisson solve to remove. difference change across
separated cells

., =

“L Villasenor/Buneman explicitly conserves
| charge, but is noisier i
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Mardahl and Verboncoeur show
importance of getting this right

ELSEVIER Computer Physics Communications 106 (1997) 219-229

Charge conservation in electromagnetic PIC codes; spectral
comparison of Boris/DADI and Langdon-Marder methods

P.J. Mardahl !, J.P. Verboncoeur

Cory Hall Box 173, Depariment of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720-1770,
USA

Received | April 1997, revised 11 August 1997

() Marder corrected beam (a) Uncorrected beam
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x-y phase space for electrons
x-y phase space for electrons
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Parallelism: domain decomposition

Domain 3

Domain 1 A—/
\\‘ "’.”,-é ........ /

Domain 4

Domain 2

Junnnnnnnnduunnnnnnmmunnnnnnnhannnnnnn
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Parallelism rules of thumb

Communication 1S expensive
* Global solves are really expensive

20



Overlap of communication and
computation needed for speed

db

Non overlap algorithms: GuardPlus
— Compute domain
— Send skin (outer edge)
— Recerve guard
— Repeat

~» Overlap algorithms
| — Compute skin S
— Send skin

— Compute interior

Guard

Body

— Receive guard

— Repeat 21



e Receive currents and add in

¢ Similar overlap possible for particles
» Move particles and weight

currents to grid

Send currents needed by
neighboring processors

Send particles to neighboring
pProcessors

Update B for half step

- ¢ Update E, B
* & Receive particles

update fluids i St start EM update

Without charge conserving current deposition, further
costly global solve 2



highly scalable manner

Object-oriented and flexible

(Arbitrary dimensional) s
e Self-consistent EM modeling

— Full EM or electrostatic + cavity
| mode

— Particle in cell with relativistic or
nonrelativistic dynamics

 But has other capabilities

% VORPAL implements basic algorithms in

| . . . 7
— Impact and field 1onization v # processors 104
— Fluid methods for plasma or neutral VORPAL scales well to
gases 1,000’s of processors
. Implicit EM (strong scaling)

— Secondary emission
e And 1s modern

— Serial or Parallel (general domain decomposition)
— Cross-platform (Linux, AIX, OS X, Windows)
— Cross-platform binary data (HDFS) 23



Simplest algorithm allows complex
computations

~» Example: formation of beams in laser-plasma
interaction

nature

Dream beam

The dav ]f\l}%ll celerator
e C!

—

El.}l

The Earth’s hum
Sounds of air and sea

Protei

LR I
Vil




Elumdatlon long pulses shorten to resonance,
capture, loading, acceleration
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t=0.0s, X, = 8.997x10 m t=0.0s. X, = 9.000x10”m
1.0
1.2
E
0.0 = 08
S
v
504
-1.0
0.0
-R0 -40 ;5 0.0 -80 6.0 40 2.0 0.0
. t=0.0s, X, = 8.997x10 7 m x [107” m]
t=00s
0.5
0.0 1.2
‘ 2
=
= 0.8
-0.5 =
v
_1‘0 : 0~4
-8.0 -4.0 0.0
-5
x [107 m] 00
-4.0 0. 0 4.0
y [10° m]
LI



Complications: boundaries

26



y-{« Early work on structured meshes had

stair-step boundary conditions

120x24x24 = 71,424 cells
= 215,000 degrees of freedom

N (L/Ax) cells 1n each direction
Error of (Ax/L)? at each surface cell
O(N?) cells on surface

Error = N2(Ax/L)? = O(1/N)
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%

3 cell SRF

High density of higher-
order modes

FFT allows extraction of
field shape

Excite that field,
measure frequency by
fitting

Modes computed with combination of FFT
and fitting

260

240 L

220 ‘ Il [l’i;'l

dB

200

180

160

0 1 2 3 4 5 6 7 8 9
freq [GHZ]
Excite with delta-function initial condition

Run 25000 steps
FFT
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Convergence studies confirm result,
indicate modeling problem

Stair-step error is 10-3 at
1000 cells per
dimension, error linear
with cell size

Requires 10,000 cells
per dimension to get 104
accuracy . | | |

1012 cells for 3D °© ™ 1000 10000
problem

1

0.1

0.01

2 0.001

1e-05

'
| This approach will not give answer even on large, parallel

hardware s




% Finite elements give one approach to improved
boundary modeling

« Tau3P, HFSS, ...
B=Y b (up(x) E=Ye/(Huy (x)
0B < db
5=2d—t]‘(t)u;§(x) VxE=Y ¢/(t)Vxuy (x)
E%muf (xX)==Y e, ()V x uf (x)

[ d3x2%(t)ufr up (x) == [dx Y e,(ug (x)* Vxup (x)
k /
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Finite elements require global solves, more

L ‘{ intense particle calculations
* Global mass matrix inversion required at each step
db
Mb o =_Cee¢
. . dt .
» Self consistency difficult and charge conservation not
guaranteed
M '@=62(C’°b—‘u j)
¢ 1 0
jo = qu-viufj(xi((n +1/2)Ar))
ptclsi

 Difficult to follow particles
— List of regions
— List of FE’s with support in that region

— Complex FE element evaluation at each time step
for each particle



% Resurgence of regular grids: cut cells give
same accuracy as finite elements

* For cells fully interior, us Py A
regular update W
* For boundary cells: >
— Store areas and lengths £y
— Update fluxes via
b =—Eyl —Eyl, /

— Update fields via
B,=®, / A
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%Cut -cell boundary conditions accurately
represent geometry

e Tesla 2000 cavities
o 312x56x56 (10°) cells




T%i{ Dey-Mittra (1997) cut-cells allow 10

 Less than 10° cells for
cavity modeling at one
part in 10*

* Implementation exists
now in VORPAL

error

accuracy

1

0.1

0.01

0.001

1e-04

1e-05

1e-06 L—

Stairstep

100

Dey-Mittra
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% Dey-Mittra problem: small triangles give
L EEE . i :
| high frequencies, small time steps

» B update matrix coefs ~ length/area
» Length/area becomes infinite as area vanishes
» Get localized, high-frequency modes

» Must throw out small cell fragments
t =0.000 s

2.0

1.0 |

E, [10° V/m]

(=

!\J
-

-0.10 0.00 0.10
X [m]
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Improvement on cut-cell recently
discovered

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS
Int. J. Numer. Model. 2003; 16127-141 (DOI: 10.1002 jnm.488)

A uniformly stable conformal FDTD-method in Cartesian grids
I. A. Zagorodnov®!, R. Schuhmann and T. Weiland

1

AL/ Are

(al drl (b} diL

* New method gives error lower than Dey-Mittra
* Does not have reduction of stable At
« Favorable properties re particle introduction

* Now being implemented
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Regular, structured grids allow for self-
consistent integration of particles

Wakefield for NLC cavities computed by VORPAL in 3b-



Regular, structured grids allow for self-
consistent integration of particles

b )

Wakefield for Tesla/ILC cavities computed by VORPAL:s



Bl This capability is at FNAL now!

VORPAL installed
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Future?

« More accurate EM integrators with boundaries and
particles? Wish list:

— Absolutely stable, getting slow solution correct for
large time steps

— No global solves

« More accurate particle deposition not requiring higher
order 1n all directions

e (Conformal boundaries with
— Surface resistance

— Dark currents

40



